On the Basic Properties of g-Circulant Matrix via Generalized k-Horadam Numbers

نویسندگان

  • Necati Taskara
  • Yasin Yazlik
  • Nazmiye Yilmaz
چکیده

In this paper, by considering the g-circulant matrix Cn,g(H) = gcirc(Hk,1,Hk,2, . . . ,Hk,n) whose entries are the generalized k-Horadam numbers, we present a new generalization to compute spectral norm, determinant and inverse of Cn,g(H). In fact the results in here are the most general statements to obtain the inverses and determinants in such matrices having the elements of all second order sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectral norms of geometric circulant matrices with the generalized k-Horadam numbers

In this paper, we use the algebra methods, the properties of the r-circulant matrix and the geometric circulant matrix to study the upper and lower bound estimate problems for the spectral norms of a geometric circulant matrix involving the generalized k-Horadam numbers, and we obtain some sharp estimations for them. We can also give a new estimation for the norms of a r-circulant matrix involv...

متن کامل

On the spectral norms of some special g-circulant matrices

In the present paper, we give upper and lower bounds for the spectral norm of g-circulant matrix, whose the rst row entries are the classical Horadam numbers U (a,b) i . In addition, we also establish an explicit formula of the spectral norm for g-circulant matrix with the rst row ([U (a,b) 0 ] , [U (a,b) 1 ] , · · · , [U (a,b) n−1 ]).

متن کامل

Higher numerical ranges of matrix polynomials

 Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

Inverse and Moore–penrose Inverse of Toeplitz Matrices with Classical Horadam Numbers

For integers s,k with s 0 and k 0 , we define a class of lower triangular Toeplitz matrices U (s,k) n of type (s,k) , whose non-zero entries are the classical Horadam numbers U (a,b) i . In this paper, we derive a convolution formula containing the Horadam numbers. Using this formula, we obtain several combinatorial identities involving the Horadam numbers and the generalized Fibonacci numbers....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015